Khovanov Homology, Sutured Floer Homology, and Annular Links J. Elisenda Grigsby and Stephan Wehrli
نویسنده
چکیده
In [28], Lawrence Roberts, extending the work of Ozsváth and Szabó in [23], showed how to associate to a link, L, in the complement of a fixed unknot, B ⊂ S, a spectral sequence whose E term is the Khovanov homology of a link in a thickened annulus defined in [2], and whose E term is the knot Floer homology of the preimage of B inside the double-branched cover of L. In [6], we extended [23] in a different direction, constructing for each knot K ⊂ S and each n ∈ Z+, a spectral sequence from Khovanov’s categorification of the reduced, n–colored Jones polynomial to the sutured Floer homology of a reduced n–cable of K. In the present work, we reinterpret Roberts’ result in the language of Juhász’s sutured Floer homology [8] and show that the spectral sequence of [6] is a direct summand of the spectral sequence of [28].
منابع مشابه
Sutured Khovanov homology distinguishes braids from other tangles
We show that the sutured Khovanov homology of a balanced tangle in the product sutured manifold D×I has rank 1 if and only if the tangle is isotopic to a braid.
متن کاملProperties and applications of the annular filtration on Khovanov homology
The first part of this thesis is on properties of annular Khovanov homology. We prove a connection between the Euler characteristic of annular Khovanov homology and the classical Burau representation for closed braids. This yields a straightforward method for distinguishing, in some cases, the annular Khovanov homologies of two closed braids. As a corollary, we obtain the main result of the fir...
متن کاملNotes on the Heegaard-floer Link Surgery Spectral Sequence
In [8], P. Ozsváth and Z. Szabó constructed a spectral sequence computing the HeegaardFloer homology ĤF (YL) where YL is the result of surgery on a framed link, L, in Y . The terms in the E1-page of this spectral sequence are Heegaard-Floer homologies of surgeries on L for other framings derived from the original. They used this result to analyze the branched double cover of a link L ⊂ S3 where...
متن کاملKnot Floer homology in cyclic branched covers
In this paper, we introduce a sequence of invariants of a knot K in S3 : the knot Floer homology groups ĤFK(Σm(K); K̃, i) of the preimage of K in the m–fold cyclic branched cover over K . We exhibit ĤFK(Σm(K); K̃, i) as the categorification of a well-defined multiple of the Turaev torsion of Σm(K)− K̃ in the case where Σm(K) is a rational homology sphere. In addition, when K is a two-bridge knot, ...
متن کاملCombinatorial Description of Knot Floer Homology of Cyclic Branched Covers
In this paper, we introduce a simple combinatorial method for computing all versions (∧,+,−,∞) of the knot Floer homology of the preimage of a two-bridge knot Kp,q inside its double-branched cover, −L(p, q). The 4-pointed genus 1 Heegaard diagram we obtain looks like a twisted version of the toroidal grid diagrams recently introduced by Manolescu, Ozsváth, and Sarkar. We conclude with a discuss...
متن کامل